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Intraduction and Background

Acrospace yehicle design is an iterative progess which
requires the integration of numerqps disciplinary analyses
(e.g., acrodynamics, structures, propulsion, performance, and
cost). Often, the time required ta set-up the design problemy,
model the disciplinary interactions, and obtain an optimum
solution is significant, Therefore, once a solution js reached,
it is imperative to extract as much design information §s



possible. In addition to design variable information pertain-
ing to the optimum, it is possible to obtain a description of
the design space about the optimal configuration through a
post-optimality (or sensitivity) analysis. In particular, an
optimal sensitivity analysis may be used to infer the change
in the present optimal design with respect to a small change
in a constraint or a previously fixed parameter. This infor-

mation which is generally available without having to re-

optimize the entire system may also be advantageously used
in the solution of a decomposed optimization problem. The
present investigation focuses on the application of optimal
sensitivity analyses to aerospace vehicle design.

Sensitivities are typically used in design of complex
systems to compute the change in the set of output variables
(including the constraints and objective function) to a small
change in a given design variable (while holding the other
design variables fixed).1»2 When coupled with an optimiza-
tion scheme, the sensitivity information is used to move the
design variables in the direction of the optimal solution.
Additionally, the sensitivity calculations may be used to
extract information regarding the disciplinary couplings
within a complex system. Because this application of sensi-
tivities is used to improve a design configuration, this ap-
proach may be referred to as a design sensitivity analysis,
For example, in aircraft design, design sensitivity informa-
tion can be used anywhere in the design space to infer how a
change in the wing aspect ratio, sweep, or twist affects the
aircraft’s overall weight, or direct operating cost (DOC)
without violating a range constraint. Additionally, through
a design sensitivity analysis, the coupling between structures
and aerodynamics or weights and performance can be as-
sessed.

In a preliminary design environment, the solution of a
single optimization problem is seldom satisfactory. In addi-
tion to the present solution, the impact of design changes on
the optimal configuration is of significant interest. Fortu-
nately, this information is generally available without hav-
ing to re-optimize the entire system.?"l 1 The use of
sensitivities in this fashion (where the relationships involve
optimal variables) may be termed an optimal sensitivity anal-
ysis. In terms of the aircraft design problem discussed pre-
viously, utilizing sensitivity information at an optimal design
point, one can infer how a small change in the range con-
straint would change the optimum DOC and optimum de-
sign variables (wing aspect ratio, sweep, and twist).

An optimal sensitivity (or post-optimality) analysis can
take on many forms, each providing a different level of in-

formation concerning changes in the optimal solution. The
simplest form of post-optimality analysis requires only an
accurate prediction of the Lagrange multipliers at the solu-
tion, These multipliers may be used to infer changes in the
optimum solution with respect to small changes in an active
constraint and are generally provided upon solution to an
optimization problem with little or no additional computa-
tional requirements. For a small increase in computational
effort, the change in the optimum solution with respect to a
change in a previously fixed parameter may be attained. This
is the level to which post-optimality information is used in
the present investigation; however, with more numerical
effort, the altered set of optimum design variables may also
be obtained with respect to a small change in either an ac-
tive constraint or previously fixed parameter.

The present study begins with a brief discussion of the
first-order computational approach used to compute the op-
timal sensitivity information. The validity of these estimates
is then discussed through solution of two optimization prob-
lems: (1) Rosenbrock’s valley function and (2) the design of
a commercial transport aircraft. Through these applications,
the utility and limitations of post-optimality information is
demonstrated. Of specific interest, is the determination of
whether typical aerospace design constraints and parame-
ters are well-suited to a first-order post-optimality analysis.
Comparisons between the optimal sensitivity predictions and
re-optimization are also presented. With the validity of these
post-optimality estimates established, the sensitivity infor-
mation is used to improve the efficiency of the design pro-
cess without loss of accuracy. In particular, the computational
advantage of using optimal sensitivity information in a hier-
archically-decomposed, single-stage-to-orbit (S STO) launch
vehicle design problem is demonstrated.

Analysis
Methodology

There are several available methods for computing op-
timal sensitivity information. These techniques are summa-
rized in References 3, 5, 8 and 9. In general terms, a nonlinear
programming problem may be mathematically expressed in
terms of the design variables (x;), problem constramts (cl)
and an objective function (F) as '

minimize F, where  F = F(xq,x9,....x,)
subject to Cj = Cj(X1 X9, Xp)yi=1, m



This problem will also be characterized by a number of
parameters (pj, j=1,k) which remain fixed during the opti-
mization procedure. For an aircraft, these parameters may
include the cruise Mach number, the maximum cruise range,
or the number of passengers. For a launch vehicle such pa-
rameters could include engine propulsion characteristics,
payload, weight margin, or tankage weight fractions. Once
the optimization problem is solved, the change in the opti-
mal objective function. with respect to any fixed parameter
may be calculated by

dr* _ oF - 3T ac;
1

dgp  dp ap

Here A* represents the Lagrange multiplier vector at the
solution. Note that if the parameter of interest is an active
constraint bound, this equation reduces to

¢Y)

dF*

= A¥ 2
dc ' @

Most optimization algorithms provide an estimate of A*
at the solution. However, in finite precision, differences
among the various techniques may be significant. At the
solution of the problem, the necessary and sufficient condi-
tions of optimality yield

AThx=g 3

The solution to eq. (3) may be obtained by solving the equiv-
alent linear system

(AAT) A* = Ag @

however, such a solution is subject to potential conditioning
problems as the condition number of AAT is the square of
the condition number of A. In finite precision, a more accu-
rate technique for obtaining A* is by forming either a TQ
factorization? or a QR decomposition-"11 of A.

Limitations and Operational Cost

With the above analysis, the change in optimal solution
with respect to a change in a given constraint or design pa-
rameter may be estimated. However, because this estimate
is only valid in a region about the optimum where changes
are occurring linearly, we may be limited to small perturba-
tions in the parameters. Additionally, the active set of con-
straints must not be altered by the perturbation. To illustrate
the potential problems induced by an active set change, con-

sider the simple case of a single active constraint which is
initially close to the minimum unconstrained solution. If this
constraint is perturbed past the unconstrained optimum (mak-
ing the constraint inactive), it is clear that the optimal objec-
tive function would be the global minimum. However, the
sensitivity estimate (having no means to compute the un-
constrained minimum) would predict a linear variation in
the objective function continuing to values well below the
global minimum.

Other considerations which effect the valid extrapola-
tion range of the sensitivity estimates include problem scal-
ing and convergence tolerance. For a problem with numerous
active constraints or numerous parameters of interest, scal-
ing is always a general optimization concern. In particular,
Refs. 7 and 11 demonstrate that the Lagrange multiplier es-
timates calculated in the scaled space and then transformed
back to the unscaled design space are generally more accu-
rate than A* estimates computed directly in the unscaled
space. Additionally, although many optimizers provide an
estimate of A* as part of the termination process, accurate
estimates are only ensured when the problem has converged
tightly.

For an optimization routine that does not already pro-
vide an estimate of A*, the operational cost of adding such
an analysis is quite small relative to the cost of the optimiza-
tion itself. In fact, at the solution, a general quadratic opti-
mization routine may already provide an estimate of g and
have performed the required factorization of A. If a TQ fac-
torization of A has been performed, the additional computa-
tions needed to produce A* require on the order of (nm + m2)
operations. Note that this process does not require any addi-
tional function or gradient evaluations. With accurate esti-
mates of A*, the change in optimal objective function with
respect to a constraint variation is known. However, to ob-
tain a prediction of the change in optimal objective function
with respect to a parameter variation, one or two extra func-
tion evaluations (depending on the choice of finite-differ-
encing approximation) are required to solve eq. (1) for each
parameter of interest.

Results and Discussion
Rosenbrock’s Valley Function
Since the optimal sensitivity predictions are in effect a
first-order approximation, this information is only expected

to be valid in a small region about the optimum. The size of
this region is dependent on the linearity of the design space



in the direction orthogonal to the constraint. To illustrate
this regional dependence, minimization of Rosenbrock’s two-
variable valley function was performed with a single linear
constraint. Rosenbrock’s valley function is

F(xp,Xp) = 100.0(x3 - ;D2 + (10-x)2 (5

This design space is displayed in Fig. 1, where the
contours shown represent constant values of the objective
function. As shown in this figure, application of the optimal
sensitivity estimates is performed in both a linear and non-
linear region of the design space. The optimal sensitivity
value was computed and compared with the actual change
in optimal objective function (F*) obtained through re-
optimization. Optimization was performed with the sequen-
tial quadratic programming algorithm, NPSOL, which uses
a quasi-Newton method to approximate the Hessian.12 At
the solution, NPSOL provides an estimate of A* (obtained
through a TQ factorization of A in the scaled design space).
To eliminate finite difference effects, the objective-gradi-
ent, Jacobian, and Hessian were computed analytically for
this sample problem.
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Fig. 1 Rosenbrock’s valley function.

Comparison between the sensitivity estimate and the actu-
al change in optimal solution were made for various changes in
the constraint and are illustrated in Figs. 2 and 3. As shown in
Fig. 2, for extremely smnall changes in the constraint over a highly
nonlinear region of the design space, the sensitivity prediction
agrees well with the actual change. However, for perturbations
in the constraint value (Ac) greater than approximately 5%, the
linear approximation begins to break down. For larger changes,

the sensitivity prediction is highly inaccurate and its applica-
tion leads to an erroneous result. On the other hand, for the de-
sign region and constraint of Fig. 3, the sensitivity prediction
agrees quite well over most of the design space. Note that in
this case the unconstrained minimum is reached for a Ac 0£0.173
(F* = 0). With a larger variation in the value of the constraint,
the optimal sensitivity estimate continues to predict a decrease
in the objective function when in fact one cannot occur. This
illustrates the change in active-set problem discussed earlier.
The good agreement between the sensitivity prediction and ac-
twal change in F* shown in Fig. 3 is a result of the linearity of
this region of the design space in the direction of the constraint
variation. Hence, both the topography of the design space and
direction of the constraint are significant in determining the va-
lidity of the optimal sensitivity prediction.
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Fig. 2 Extrapolation and validity of optimal sensitivity
prediction in nonlinear region of the design space.

Exact solution
—-=— Optimal sensitivity prediction

o O'ptimum with present set
of parameters

F 1 Change in
< active set
~
or =
\\\
~.
1 1 —1 1 ]
0 05 10 .15 20 25

Ac

Fig. 3 Extrapolation and validity of optimal sensitivity
prediction in linear region of the design space.

Optimal Sensitivity Analysis in Aircraft Design

Toillustrate the applicability of optimal sensitivity anal-
ysis to a more complex, aerospace design problem, a DC-9
class, commercial transport aircraft was analyzed with the
use of the PASS system.13'16 PASS is a quasi-procedural
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aircraft design system consisting of numerous disciplinary
analysis and optimization routines. The aircraft design prob-
lem is posed with twelve design variables, and nine con-
straints. As listed in Table 1, the constraints include limits
on static stability, landing and takeoff field lengths, cruise
range and thrust, and climb-gradient in the event of an en-
gine failure. Design variables include the initial and final
cruise altitude, the wing and horizontal-tail geometrical prop-
erties, the uninstalled engine thrust level, and the flap set-
ting at takeoff. Note that two additional constraints and
design variables are included to satisfy compatibility require-
ments between the analysis routines, thereby eliminating an
iteration loop.16 Use of compatibility constraints is discussed
in the next section of this paper. The analysis routines used
to solve this problem are based on those used in Ref. 13
with some modification. NPSOL12 was utilized to minimize
direct operating cost.

Table 1. Aircraft design problem: DC-9 class,
commercial transport.

Objective function = direct operating cost

Constraints
Name Min, Max,
1. Static MAargin .........ccccceevereneernvnnnerereennenessenes 0.2 1.0
2. Cruise range, Nm ............cccocvvmrvereicrirnrnvennnas 850.0 960.0
3. (Draghthrust) at cruise ....... " ...0.3 0.88
4. Second-segment climb gradient.................... 0.024 0.030
5. C_ of vertical tail with engine out ................... 0.8 0.8
6. Takeoff field length, ft...........ccccccecrrrrrevcrnnnns 7500.0
7. Landing field length, ft............c.cccceerrrcvnnennee. 6000.0
8. C|_of wing at takeoff ..... 2,39
9. C|_of horizontal tail at takeof .................c....... 0.0 0.8
Design Variables
Name . Min. Initial Value Max.
1. Initial cruise altitude, ft................ 10000.0 31000.0 50 000.0
2. Final cruise altitude, ft ............... 10000.0 31000.0 50000.0
3. Spof Wing, f2 .......oceenerrrrrrenssenenanne 5000 10007  1500.0
4. AR, wing.. 50 8.7 12,0
5. Sweep wing, deg...........ccocurererunenn. 0.0 245 50.0
6. tic, wing 0.08 0.1123 0.16
7. Wing longitudinal position .............. 03 0.35 0.45
8. S, horizontal tail ..........c..oruunneene. 750  250.18  450.0
9. AR, horizontal ............ccverecennerennee. 3.0 4.928 10.0

10. Engine static thrust level, Ib ....... 10000.0 14000.0 20 000.0
11, Maximum zero fuel weight, Ib ....30 000.0 87 650.0 9000.0
12. Takeoff flap sefting, deg................. 0.0 5.0 50.0

From the starting point listed in Table 1, 27 major iter-
ations or 610 objective function evaluations were required
for NPSOL to converge to the optimum solution. The val-
ues of the optimum design variables and objective function
are presented in Figure 4 along with a vehicle schematic. As
part of the PASS analysis, the scaled Lagrange multiplier
estimates (calculated at the solution for each active constraint
by NPSOL) are transformed to the unscaled design space.
These unscaled multiplier estimates are listed in Table 2
along with the value of each active constraint at the solu-
tion. At the solution there are six active constraints, not in-
cluding the two compatibility relations. The final column in
Table 2 presents cA*, the value of the constraint at the opti-
mum times the corresponding Lagrange multiplier estimate.
This value may be used as a guideline in comparing the ef-
fect of constraint variations of different units. Comparing
the cA* values listed in Table 2, it is clear that a small in-

-
B R
Initial cruise altitude, ft ... .......... 29540
Final cruise altitude, ft ............. 39060
WingSref, ft ..................... 986.0
WingAR 2 . ... ................. 10.2
Wingsweep,deg .................. 395
Wingtic ................ ..., 0.155
Wing longitudinal position .......... 0.323
Horizontal tail Sref, #2. . .............. 245
HorizontaltailAR. .................. 4.70
Engine static thrust, b............. 13780
Max. zero fuel weight, Ib ........... 80640
Takeolf flap deflection,deg ........... 7.3

Direct operating cost, cents/seat-mile . . 4.459

Required functionevals ............. 610

Fig. 4 Optimal solution of commercial transport aircraft
design problem.

Table 2. Aircraft design problem: active constraints and
Lagrange multiplier estimates.

Active Constraints Value, ¢ | A* (unscaled)| cA*
Static margin 0.2 1.0170e-01 | 0.0234
Cruise range, Nm 960.0 | -9.7517¢-04 |-0.9360
{Drag/thrust) at cruise ' 0.88 | -3.1136e-02 | -0.0274
Sacond-segment climb gradient | 0.024 | 7.0939 0.1703
Cy_of wing at takeoft 239 | -6.7056e-02 |-0.1602
Takeoff field length, ft 7500.0 | -6.6704e-05 l -0.5003




crease in cruise range is most beneficial toward minimizing
DOC*. A small increase in takeoff field length is next in
significance followed by either a decrease in the second-
segment climb requirement or an increase in the allowable
wing lift-coefficient at takeoff,

Comparisons between the optimal sensitivity prediction
and the actual change in optimal solution were made for
‘various changes in each active constraint. These compari-
sons are illustrated in Figures 5-9. As is clear from each fig-
ure, the optimal sensitivity estimate is nearly exact in the
limit of an infinitesimal variation of each constraint value.
Surprisingly, the estimates hold up rather well over a rela-
tively large range of constraint values. For example, as de-
picted in Fig. 5, for cruise range constraint variations on the
order of 100 nm, the optimal sensitivity estimate provides a
good prediction of the change in DOC* (to within 1.5%).
Clearly, if the cruise range is perturbed 500 to 1000 nm, the
optimal sensitivity prediction becomes invalid. This results
from both the nonlinearity of the design space and changes
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Fig. 5 Comparison of optimal sensitivity prediction for
cruise range constant variations.
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Fig. 6 Comparison of optimal sensitivity prediction for
takeoff field length constraint variations.
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Fig. 7 Comparison of optimal sensitivity prediction for
second-segment climb gradient constraint variations.
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Fig. 8 Comparison of optimal sensitivity prediction for
ratio constraint variations.

455
~—— Exact solution Changes in
50 ——~ Optimat sensitivity prediction active set
- ©  Optimum with present set
. of parameters

cents/seat-mile g

4.45

,’
””
/”’
I”
4.40l=" 1 1 1 J
-4 -2 4] 2 4

Static margin

Fig. 9 Comparison of optimal sensitivity prediction for
static margin constraint variations.

in the active set of constraints. For instance, beyond a con-
straint value of 1951 nm, the cruise range constraint becomes
inactive and further increases in this variable do not result
in alower DOC¥, as predicted. However, for constraint per-
turbations of this magnitude, we are really dealing with a
different design problem rather than a perturbation of the
original problem; hence, one would not expect these esti-
mates to be valid.



Figures 6 and 7 depict analogous comparisons in regard
to takeoff field length and second-segment climb gradient
constraint perturbations. These figures show that through-
out the entire practical range of interest, the linear sensitiv-
ity estimates predict the change in DOC* quite well (within
1% for second-segment climb gradient variations and with-
in 3% for takeoff field length perturbations). Surprisingly,
these post-optimality predictions are still found to be accu-
rate after a change in the active set of constraints.

Figures 8 and 9 show the change in optimum DOC with
respect to changes in the cruise drag-to-thrust ratio and stat-
ic margin constraints. Once again, note that in the vicinity
of the present solution (static margin range of 0.1- 0.3 and
cruise drag-to-thrust ratio from 0.7 to 1.0), the agreement is
quite good (within 1%). However, these figures also show
the potential danger of extrapolating beyond the prediction’s
linear region of validity. For the case of cruise drag-to-thrust
ratio (Fig. 8), the optimal sensitivity estimate indicates a
marginal increase in DOC* as this constraint is relaxed be-
low 0.6 when in fact such a decrease results in an infeasible
design. Note that the modest slope of the optimal sensitivity
prediction shown in Fig. 8 should be expected from the small
relative magnitude of the cA* value listed in Table 2. Figure
9 shows that as the configuration becomes more unstable,
the static margin constraint eventually becomes inactive lead-
ing to an erroneous prediction of the optimum DOC. This
figure also shows that changes in the active set will begin to
induce error for an overly stable design.

Figures 5-9 demonstrate that post-optimality informa-
tion is useful in predicting the effect of various constraint
perturbations on DOC*. To illustrate the validity of post-
optimality information with respect to a parameter variation,
the effects of perturbations in the cruise Mach number were
investigated. Fig. 10 shows the variation in optimum DOC

49
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~== Optimal sensitivity prediction

O Optimum with present set
47 of parameters
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48

DOC*, 46
cents/seat-mile
45

43
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Cruise Mach number

Fig. 10 Comparison of optimal sensitivity prediction for
cruise Mach number parameter variations.

for different values of the cruise Mach number. Through a
central-difference approximation, the slope of the re-optimi-
zation curve in Fig, 10 is computed as -1.450 cents/seat-mile
at the present optimum; whereas, with use of eq. (1), the
change in optimum DOC with respect to cruise Mach number
is predicted to be -1.448 cents/seat-mile. Hence, eq. (1), may
be used to obtain accurate estimates of the effect of parameter
variations on the optimum solution. Fig. 10 shows that for
cruise Mach numbers from 0.7 to 0.85, the post-optimality
prediction is quite accurate (to within 1% of the true value).

Table 3 lists the error in the optimal sensitivity predic-
tion relative to a re-optimized solution for various levels of
cruise range constraint perturbations (Fig. 5). Notice that the
error is quite small over a large range of perturbations. Also
listed in this table is the number of function evaluations re-
quired by the NPSOL re-optimization procedure beginning
at the present optimum (Fig. 4). Note that in this re-optimi-
zation process, no information from the original optimiza-
tion procedure was retained. Table 3 highlights the payoff in
using optimal sensitivity results to predict the effect of small
changes in a parameter or constraint. Recall that this estimate
is essentially free for constraint variations and costs only one
or two extra function evaluations for every parameter of in-
terest. Hence, use of optimal sensitivity information may be
much more efficient than re-optimization.

Table 3. Optimal sensitivity estimate versus NPSOL re-
optimization for cruise range constraint variation.

Constraint originally = 960 n.mi.
DOC* = 4.4594 cents/seat-mile
A' =-9.75170-04

Cg’;m'"' Actual DOC}, | Predicted DOC! | % Error [t F”";'m“ .E":'““““‘
. |cents/seat-mile| cents/seat-mile | in DOC* oquired by
n.mi, Re-optimization!
500 5.3930 4.9080 9.0 406
600 5.0649 4.8105 5.0 469
700 4.8331 4.7129 2.5 350
850 4.5850 4.5667 0.4 456
900 4.5235 4.5179 0.1 400
925 4,4956 4.4935 0.05 138
950 4.4695 4.4692 0.01 91
958 4.4643 4.4643 0 91
960 4.4594 -— —_ -
965 4.4545 4,4545 0 62
970 4.4496 4.4496 0 62
1000 4.4218 4.4204 0.03 91
1100 4.3451 4.3232 0.50 165
1250 4.2552 4,1766 1.85 487
1500 4.1728 3.9330 5.75 416
2000 4.1198 3.4451 16.40 555

10riginal optimization problem required 610 function evaluations.



The basic premise behind NPSOL (or any SQP algo-
rithm) involves the use of major and minor iterations.4
The major iterations determine the sequence of design points
which eventually converge to the solution; hence, it is in
each major iteration that the line-search is performed. Mi-
nor iterations are used to solve the resulting quadratic pro-
gramming problem at each design point. Since there are 14
design variables in this problem (including the two compat-
ibility variables), every minor problem iteration will require
at least 14 function evaluations to numerically estimate the
objective gradient at the present point. Furthermore, because
there may be several minor iterations in one major iteration
(particularly, during the first major iteration where the algo-
rithm is trying to identify an initial feasible point), even a
re-optimization in which only a single major iteration is need-
ed may require a large number of function evaluations. As
the perturbation from the original problem increases, so will
the number of function evaluations required in the re-opti-
mization process. This increase in numerical requirements
maust be balanced against the failing accuracy of the optimal
sensitivity prediction for large perturbations.

As shown in Table 3, for even a small perturbation in
the constraint value, NPSOL re-optimization requires a large
number of function evaluations to reach the new optimum.
This is because when the value of an active constraint is
perturbed, either the present design point (the previous opti-
mum) becomes infeasible or the perturbed constraint be-
comes inactive. As mentioned previously, either of these two
situations generally requires more than one minor iteration
(thereby, increasing the number of objective gradient evalu-
ations required for the new solution). In general, by begin-
ning the re-optimization procedure with information built-up
during the initial problem solution, the number of function
evaluations may be reduced. However, in this case, solution
of the perturbed problem may still require several minor it-
erations to either locate a feasible point or identify the cor-
rect active set of constraints. Therefore, starting the
re-optimization procedure in this manner was not found to
provide a dramatic decrease in the required number of func-
tion evaluations.

Use of Optimal Sensitivity Information in Hierarchical
Decomposition

Numerous authors have proposed the use of some form
of multi-level decomposition strategy to simplify the solu-
tion of a complex design problem. 17-20 1 such an approach,
a single, large problem is decomposed into several smaller
problems, each of which is optimized separately. Although

the solution of the decomposed problem now requires an
optimization routine for each smaller problem, the smaller
problems are simpler to analyze and properly scale. When
broken down into master and subproblems, the decomposi-
tion is termed hierarchical.18:19

From the previous analysis, it is evident that if either a
constraint or parameter is perturbed slightly, the sensitivity
prediction will yield a good estimate even in a nonlinear
region of the design space. Because the optimal sensitivity
information is nearly exact in the limit of an infinitesimally
small step away from the solution, a design problem which
is hierarchically decomposed could utilize the post-optimality
information of the subproblem to estimate the main prob-
lem objective gradient. This is possible since the subprob-
lem parameters are also the main problem design variables.
Hence, the main problem objective gradient (dF/dx) is equiv-
alent to the subproblem dF*/dp and can be estimated with
€q. (1) rather than through finite differentiation of the re-
optimized subproblem.

This use of sensitivity information is demonstrated
through the design of a fully-reusable, single-stage-to-orbit
(SSTO) vehicle. Dry-weight is the minimization variable
since for a manned launch vehicle, the dry-weight compo-
nents comprise a major portion of the total development cost.
This problem has been analyzed previously through use of a
Taguchi approach in which a form of hierarchical decompo-
sition was used.21-22 Additionally, this problem has been
treated with and without decomposition using calculus-based
optimization.23 In this investigation, the problem is posed
with 25 design variables, and five constraints. As listed in
Table 4, there are three terminal constraints in addition to a
maximum dynamic pressure and maximum normal force
constraint. Design variables include the gross weight and
thrust-to-weight ratio at liftoff, the initial launch direction,
the reference acrodynamic susface area, six propulsion pa-
rameters, and a set of 15 ascent pitch rates.

To analyze this problem, the three degree-of-freedom
equations of motion were numerically integrated with use
of the Program to Optimize Simulated Trajectories.24 As
shown in Fig. 11, the required set of POST inputs include
all 25 design variables. POST is used to evaluate the inflight
and terminal constraints and to compute the vehicle mass-
ratio (MR). For a given MR, the Configuration Sizing pro-
gram developed at LaRC is used to size the vehicle and
determine the dry-weight. As shown in Fig. 11, the six pro-
pulsion parameters and the liftoff thrust-to-weight are the
only design variables required by CONSIZ.



Table 4. Single-stage-to-orbit launch vehicle

design problem.
Objective function = dry weight
Constraints
Name Required Value
1. Terminal altitude, ff..........ccceniccrennerisessnnrnneasersins 3.0380565
2. Terminal flight path angle, dag ...........ceeineiisnciininne 0.0
3. Teminal inclination, deg .......... 90.0
4. Maximum dynamic pressure, Ib/ft2 vreress 1000.0
5. Maximum nomal force, Ib .........ccccvineeieinneniennnas 3.6505
Design Variables
Name Min. Initial Value Max.
1. Gross liftoff weight, b ............ 1.0e6 2.0e6 2.0e6
2. Spop Wing, 12 ..o, 10000 15000  2000.0
3. Launch azimuth, deg ............. 160.0 180.0 200.0
4. Thrust/weight at liftoff ............... 12 1.35 1.5
5. Chamber pressure, psia ( 38500  4700.0
6. Mode 1, mixture ratio .............. . 12.0 14.0
7. Mode 2, mixture ratio ....... Y 6.0 7.0
8. Mode 1, area ratio .............ccues . 40.0 60.0
9. Mode 2, area ratio ................... . 110.0 160.0
10. Mode 1/mode 2 transition
Mach number ...........ceeveeiiunnes 15 3.0 45
11-25. Setof 15 pitch rates, deg/sec ..0.0 -120.0
DESIGN VARIABLES DESIGN VARIABLES

Gross woight | ot TW | oty Propulsion system variables (6)

Initial launch direction, Seg¢
Pitch rates (15)
Propulgion variables (8)

TV | ittoft

- MR
Other weights & sizing inputs

* % LOX, % LHp
* Load factors
* Tank and propeilant densities

Other trajectory inputs
» Aero coefficients
o Atmospheric model

Gross weight | o A
-—

Bumout weight Stet,
Dry weight

Evaluation of
inflight and
terminal conditions

Cy= Grosswemlw-GLowc-o
C2 = Sret = Stef, = 0

Fig. 11 Trajectory/weights and sizing integration process.

As part of the sizing process, CONSIZ scales the vehi-
cle and re-computes the gross liftoff weight (GLOW,.) and
reference aerodynamic surface area (Sref). Therefore, con-
figuration-control is required between POST and CONSIZ
to ensure that the reference aerodynamic surface area re-

sulting from the vehicle sizing process (Srefc) is the same
as the reference acrodynamic surface area used to compute
the aerodynamic forces and evaluate the flight path (Sref).
Similar control must be placed on the gross liftoff weight.
These requirements could either be enforced by iteration or
through the addition of two extra constraints (compatibility
constraints) as shown in Fig. 11. By using compatibility con-
straints, the configuration-control requirements are placed
on the optimizer and an iterative loop is removed.

Removal of the POST-CONSIZ iteration loop reduces
the required number of function evaluations. Additionally,
integration of POST and CONSIZ in this manner has nu-
merous design benefits. In regards to optimization, integrat-
ing these two codes allows dry-weight or other vehicle
component weights to become available as optimization vari-
ables. Furthermore, through integration, the combined vehi-
cle-trajectory model is guaranteed to be consisient. Note that
prior to the integration of these two disciplinary algorithms,
a designer was forced to iterate between these two codes
acting as a human interface.

Before resorting to decomposition, the solution of this
SSTO optimization problem was attempted with use of a
single optimizer as shown in Fig. 12. Use of both NPSOL12
and a projected-gradient approach were tried; however, a
converged solution was never achieved. Similar problems
with a single optimizer were encountered in Ref. 23, It is
believed that most of this convergence difficulty may be at-
tributed to scaling problems. With use of a hierarchical de-
composition approach, as sketched in Fig. 13, convergence
was shown to be much easier to achieve. This is most likely
a result of two factors, First, when decomposed, the number
of optimization degrees-of-freedom (defined as the number
of design variables minus the number of active constraints
at the solution) in each of the two optimization problems is
less than in the original problem. For this problem, when
decomposed, the subproblem is characterized with 12 opti-
mization DOF and the main problem with seven optimiza-

F = dry weight (minimize)

X = propulsion system characteristics (6),
T | kot pitch rates (15), gross weight | ttott
Srefs inttial launch direction

P = mission requirements
& = inflight & terminal constraints

Weights
& Sizing

Fig. 12 SSTO launch vehicle design problem, single
optimization.

=




MAIN PROBLEM
F = dry weight (minimize)
X= propulsion system characteristics (6),

_%pﬂ_

R ™ | uttolt
P = mission requirements
Current value Optimal
SUBPROBLEM dFeie

F = dry weight (minimize)

X = pitch rates (15), gross weight [ Wtote
Sygf, initial launch direction

B = propulsion system characteristics (6),
TIW | ity

& = inflight & terminal constraints

& Sizing

Fig. 13 SSTO launch vehicle design problem, hierarchical
decomposition optimization,

Optimizer

tion DOF; whereas the original problem has 19 optimiza-
tion DOF. Less optimization DOF typically implies less dif-
ficulty for the optimizer once a feasible point has been
obtained. Secondly, by decomposing the problem such that
the trajectory variables are in the subproblem and the pro-
pulsion variables are in the main problem (Fig. 13), disci-
plinary cross-coupling within each problem becomes less of
an issue (i.c., the terminal and inflight trajectory constraints
are satisifed by variations in the trajectory design variables).

As a result of the decomposed structure of this design
problem, computation of the main-problem objective gradi-
ent could require a subproblem optimization for each main-
problem variable perturbation. This implies seven
subproblem optimizations (each requiring numerous func-
tion evaluations) would be needed for every main-problem
minor iteration. However, as illustrated in Figure 13, some
of this computational expense could be eliminated by pass-
ing the optimal sensitivity information of the converged sub-
problem to the main problem. This is possible since the
parameters of the subproblem are the design variables of the
main problem. In this case, only seven extra function evalu-
ations are required to estimate the main-problem objective
gradient through eq. (1).

Convergence results and the optimum dry-weight for
several optimization strategies are presented in Table 5 along
with the prior solution of Refs. 21 and 22. As mentioned
previously, with just a single optimizer, converged solutions
were not achieved; therefore, for these cases, the final value
of dry-weight is above that determined in the earlier studies.
However, when decomposed as described in Fig. 13, only
11 main-problem major iterations were required for NPSOL
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to converge to the optimum solution (beginning from the
design point listed in Table 4). Without the use of the sub-
problem optimal sensitivity information in the main-prob-
lem, 477 function evaluations were required to reach this
solution.

When the main-problem objective gradient calculations
were based on the subproblem optimal sensitivity calcula-
tions, the number of function evaluation required to reach
the optimum decreased to 349 (a decrease of 27%). An even
greater decrease could have been achieved; however, during
the first two main-problem major iterations, finite-differenc-
ing was needed to compute the objective gradient. This was
required because with the initial set of design variables, all
of the inflight and terminal constraints could not be satisfied
by the subproblem optimization, With an infeasible result in
the subproblem, the computation of dF*/dp from eq. (1) could
not be performed. Once the subproblem constraints were
satisfied, the optimal sensitivity information could be com-
puted and passed from the subproblem to the main problem,
thereby avoiding the need for numerous subproblem optimi-
zations to compute the main-problem objective gradient.

The values of the optimum design variables and objec-
tive function obtained through solution of the hierarchically
decomposed problem which utilized the post-optimality in-
formation are shown in Fig. 14 along with a vehicle sketch.

Table 5. Single-stage-to-orbit launch vehicle
optimization results.

Trajectory/| Required Final
Optimization Weights # of Obijective
Approach & Sizing Function | Function
, Analyses | Evaluations | Value, Ib
Taguchi Method?!2 Separate — 109,400
Single Optimization
Problem Projected | Integrated >1000 116,000
Gradient Method
Single Optimization
Problem NPSOL Integrated >1000 112,000
Hierarchical
Decomposition
with Finite Integrated 477 109,080
Ditferencing in Main
Problem NPSOL
Hierarchical
Decomposition
with Post-Optimality | Integrated 349 109,080
Information
in Main Problem




Gross liftoff weight, b .. .. .. 1.23906
Sref .. e 1562
Launch azimuth,deg ....... 182.1
Thrustweight at liftoff . . ........ 1.2
Chamber pressure, psia . . . . .. 4700
Mode 1, mixture ratio ......... 100
Mode 2, mixtureratio .......... 7.0
Mode 1, arearatio. . ......... 49.38
Mode 2, arearatio........... 160.0
Mode 1/mode 2 transition
Machnumber ................ 1.5
Set of 15 pitch rates

Dryweight b ........... 109080

Fig. 14 Optimal solution of single-stage-to-orbit launch
vehicle design problem.

The optimum design variables found matched that of Refs.
21 and 22 quite well. However, because the trajectory and
weights and sizing disciplines were integrated, a consistent
vehicle-trajectory model results. This consistency resulted
in a slighdy lower final dry-weight (see Table 5).

Conclusions

The objective of the present research was to investigate
the applicability of optimal sensitivity information to aero-
space vehicle design. An optimal sensitivity (or post-opti-
mality) analysis refers to computations performed once the
initial optimization problem is solved. These computations
may be used to characterize the design space about the present
solution and infer changes in the present solution as a result
of a constraint or parameter variation without re-optimizing
the entire system. This analysis has demonstrated that the
post-optimality information generated through first-order
computations can be used to accurately predict the effect of
constraint and parameter perturbations on the optimal solu-
tion. This first-order analysis is essentially free for constraint
variations and requires a single extra function evaluation for
perturbations in a previously fixed parameter.

For the aircraft design problem investigated, the opti-
mal sensitivity predictions matched the true variation in op-
timum DOC over the practical range of cruise range, takeoff
field length, second-segment climb gradient, drag-to-thrust
ratio during cruise, and static margin constraint values to
within a few percent. Furthermore, the variation in DOC*
with respect to the parameter, cruise Mach number, was also
estimated accurately (to within 1% over the range 0.7 to 0.85).
Hence, an appropriate use of optimal sensitivity information
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is to demonstrate the numerous design possibilities avail-
able through a change in the constraints or parameters with-
out the need for re-optimization. For even small constraint
variations, re-optimization was shown to require a large num-
ber of function evaluations because (1) either the previous
optimum becomes infeasible or (2) the perturbed constraint
becomes inactive. Hence, use of optimal sensitivity infor-
mation was shown to be much more efficient than re-optimi-
zation. However, for large perturbations in a constraint or
parameter, active set changes and infeasible regions of the
design space cause the optimal sensitivity predictions to
become inaccurate and re-optimization is required.

Because the optimal sensitivity information is nearly
exact in the limit of an infinitesimally small step away from
the solution for parameter variations, a design problem which
is hierarchically decomposed could utilize the post-optimality
information of the subproblem to estimate the main-prob-
lem objective gradient. This is possible since the subprob-
lem parameters are also the main-problem design variables.
Estimation of the main-problem objective gradient in this
manner, rather than through finite differentiation of the re-
optimized subproblem, results in a significant decrease in
the number of objective functions required to reach the opti-
mal solution. This use of optimal sensitivity information
provided a 27% decrease in the number of required function
evaluations for solution of a reusable, single-stage-to-orbit,
launch vehicle design problem.

To solve this launch vehicle design problem, integra-
tion of a trajectory program and weights and sizing algo-
rithm was performed. This integration relied on compatibility
constraints to enforce configuration-control and eliminate
an otherwise costly iteration loop. Through integration of
these two disciplinary codes, dry-weight or any other vehi-
cle component weight combination becomes available as a
potential optimization variable and a consistent vehicle-tra-
jectory model is ensured. Additionally, this consistency re-
sulted in a slightly lower final objective function value.
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